Antisense oligonucleotide nanocapsules efficiently inhibit EWS-Fli1 expression in a Ewing's sarcoma model.
نویسندگان
چکیده
The cytogenetic abnormality of Ewing's sarcoma is related to the presence of a balanced t(11;22) translocation expressing the EWS-Fli1 chimeric fusion protein. Oligonucleotides (ODNs) are specific compounds that inhibit gene expression at the transcriptional level. They possess a poor bioavailability and are degraded by nucleases very rapidly. Therefore, there is a strong need for the development of ODN drug delivery systems. In the present study, polyisobutylcyanoacrylate nanocapsules entrapping ODNs in their aqueous core were prepared, with high encapsulation yield (99%). Previous studies have demonstrated that such complexes were able to inhibit tumor growth in mice. Nevertheless, no information was available about their mode of action at the cellular level. The aim of this study was to investigate the efficacy of these ODN nanocapsules on cultured tumor cells. We found that nanocapsules were capable of protecting ODN against degradation. Using confocal microscopy, we observed that cell uptake and nuclear accumulation of ODNs were importantly enhanced when ODNs were associated with these nanocapsules. Consequently, a specific cellular growth inhibition and suppression of EWSFli1 fusion gene expression was noticed. In conclusion, it was demonstrated that nanocapsules as nonviral vectors show great potential for the delivery of ODNs to cells.
منابع مشابه
In vivo potentialities of EWS-Fli-1 targeted antisense oligonucleotides-nanospheres complexes.
The EWS/FLI-1 fusion gene, resulting from a t(11;22) translocation, plays a key role in the pathogenesis of Ewing sarcoma. Previously, we have shown that antisense oligonucleotides designed against EWS-Fli-1 inhibited tumor growth in nude mice provided they were delivered intratumorally by nanocapsules or by CTAB-coated nanospheres. In this study, we have used two types of nanospheres (designat...
متن کاملTreatment of Ewing's sarcoma using an antisense oligodeoxynucleotide to regulate the cell cycle.
Ewing's sarcoma (ES) is one of the most malignant tumors of bone and soft tissue in children and young adults. ES belongs to a group of small round cell tumors (SRCTs) that also includes neuroblastoma, rhabdomyosarcoma, and malignant lymphoma. However, ES exhibits several specific chimeric genes (EWS-FLI1, EWS-ERG, EWS-ETV1, EWS-E1AF, and EWS-FEV) caused by chromosomal translocations that are n...
متن کاملCombined transcriptional and translational targeting of EWS/FLI-1 in Ewing's sarcoma.
PURPOSE To show the efficacy of targeting EWS/FLI-1 expression with a combination of specific antisense oligonucleotides and rapamycin for the control of Ewing's sarcoma (EWS) cell proliferation in vitro and the treatment of mouse tumor xenografts in vivo. EXPERIMENTAL DESIGN EWS cells were simultaneously exposed to EWS/FLI-1-specific antisense oligonucleotides and rapamycin for various time ...
متن کاملA zebrafish transgenic model of Ewing’s sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis
Ewing's sarcoma, a malignant bone tumor of children and young adults, is a member of the small-round-blue-cell tumor family. Ewing's sarcoma family tumors (ESFTs), which include peripheral primitive neuroectodermal tumors (PNETs), are characterized by chromosomal translocations that generate fusions between the EWS gene and ETS-family transcription factors, most commonly FLI1. The EWS-FLI1 fusi...
متن کاملAntisense Growth Inhibition of Ewing’s Sarcoma and Related Tumor Cells
The translocation t(11;22) is a common chromosomal abnormality detected both in Ewing’s sarcoma and in primitive neuroectodermal tumor cells. The translocation results in an EWS-Fli1 fusion gene, made up of the 5 9 half of the EWS gene on chromosome 22 fused to the 3 9 half of the Fli1 gene on chromosome 11. Recent studies have evaluated possible roles of the fusion gene products. However, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Oligonucleotides
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2006